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Executive Summary 

 

This final report documents the major developments and findings during the grant period from 

March 2009 to November 2012. The main objective of this project was to develop a new 

discontinuous formulation named correction procedure via reconstruction (CPR) for hyperbolic 

conservation laws, and demonstrate its capability for the Euler and Navier-stokes equations on 

hybrid 3D unstructured prismatic and tetrahedral grids. The CPR method can unify several 

popular high order methods including the discontinuous Galerkin, the spectral volume and 

spectral difference methods into an efficient differential form without explicit volume or surface 

integrals. By selecting the solution points to coincide with the flux points, solution reconstruction 

can be completely avoided.  

 

We successfully fulfilled the main objective in the present study. More specifically, we achieved 

the following accomplishments: 

 

• Extended the CPR formulation to 3D hybrid meshes, including tetrahedral, hexahedral, 

prismatic elements; 

• Extended the CPR formulation to the Navier-Stokes equations on hybrid elements, and 

demonstrate the method for benchmark 3D problems  

• Implemented the CPR method on clusters of CPUs and GPUs, and achieved up to two orders 

of magnitude speedup on the GPU than the CPU 

• Extended the method for dynamic moving grids satisfying the so-called geometric 

conservation laws, and demonstrated the capability for bio-inspired flow problems 

• Implemented solution-based hp-adaptations using a variety of adaptation criteria including 

residual, adjoint and entropy based adaptation criteria. 

 

In the First International Workshop on High-Order CFD Methods, it was demonstrated through 

many benchmark cases that high-order methods are capable of achieving the same error with less 

CPU time than low order methods. 
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Hartmann, K. Hillewaert, H.T. Huynh, N. Kroll, G. May, P-O. Persson, B. van Leer, and M. 

Visbal. “High-Order CFD Methods: Current Status and Perspective,” International Journal 

for Numerical Methods in Fluids, 2012, Accepted. 

• H. Gao and Z.J. Wang, “A Conservative Correction Procedure via Reconstruction 

Formulation with the Chain-Rule Divergence Evaluation”, J. Computational Physics 232, 7–

13 (2013). 

• Y. Li and Z.J. Wang, “An Optimized Correction Procedure via Reconstruction Formulation 

for Broadband Wave Computation”, Communications in Computational Physics, Vol. 13, 

No. 5, pp. 1265-1291 (2013). 

• M. Yu, Z. J. Wang and H. Hu, “Airfoil Thickness Effects on the Thrust Generation of 

Plunging Airfoils”, J. of Aircraft, accepted. 
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1. Introduction 

 

Advantages of high-order methods are well recognized in the computational fluid dynamics 

(CFD) community especially for aeroacoustic noise predictions, vortex dominated flows, large 

eddy simulation and direct numerical simulation (DNS) of turbulent flows. Since the truncation 

error of a high-order method decreases more rapidly than that of a lower order method, the more 

stringent the accuracy requirement is, the more efficient a high-order method becomes in 

computational cost. For the practical use in industries, lower order (1
st
 or 2nd) unstructured grid 

methods are usually employed for the reason of superior geometrical flexibility and robustness. 

However, these methods are likely too dissipative to capture small vortex structures in turbulent 

flows and are often not capable of obtaining grid converged solutions. Increased prediction 

accuracy is often required for many aerodynamic problems with both complex physics and 

geometry, such as helicopter blade vortex interactions, flow over high lift devices, and aero-

acoustic noise generated by the landing gear.  

In the past decades, there has been significant progress in developing high-order methods 

capable of solving the Navier-Stokes (NS) equations on unstructured grids. For compressible 

flow computations in aerospace applications, the discontinuous Galerkin (DG) method 

[31,4,5,7,1,2,29,42] has attracted intensive interest. One particular feature of the DG method is 

the discontinuous solution space of high-order approximations for each element, which allows 

the scheme to be very flexible in dealing with complex configuration and in accommodating 

solution based adaptations. Other methods assuming element-wise discontinuous solution are 

staggered-grid (SG) multi-domain spectral method [21], spectral volume (SV) [43,46-

48,25,39,14,12] and spectral difference (SD) [23,24,28,40] methods. Another notable feature that 

is common among these methods is the use of one of the Riemann solvers [33,32,30,19,22] to 

compute unique fluxes at element interfaces to incorporate “upwinding” characteristics of wave 

propagation, similar to the Godunov type finite volume method [11,41]. The main difference 

among these methods lies in how the governing equations are discretized and the degrees-of-

freedom (DOFs) are chosen. The DG method is based on the weighted residual form. Various 

types of DG schemes are derived with different choice of DOFs. Depending on how the DOFs 

are defined, DG schemes can be further divided into modal and nodal approaches. The SV 

method is discretized in the integral form similar to the finite volume method and the DOFs are 

always the sub-cell or control volume (CV) averages. The SG/SD method is based on the 

differential form without any integration and the DOFs are chosen as the nodal values within 

each element. More comprehensive reviews of these methods are given in [44].  

Recently, a novel formulation named CPR (correction procedure via reconstruction) was 

developed by Huynh [17,18] for 1D conservation laws, and extended to simplex and hybrid 

meshes by Wang and Gao [45]. The CPR method is based on a nodal differential form, with an 

element-wise discontinuous polynomial solution space. The solution polynomial is interpolated 

from the solutions at a set of solution points. This formulation has some remarkable properties. 

The framework is easy to understand, efficient to implement and recovers several known 

methods such as the DG, SG or the SV/SD methods. Furthermore, by choosing the solution 

points to coincide with the flux points, the reconstruction of solution polynomials to calculate the 

residual can be completely avoided. The DG scheme derived through the CPR framework is 

probably the simplest and most efficient amongst all DG formulations since explicit integrations 

are avoided. In a recent study [9], the CPR method has been extended to the Navier-Stokes 
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equations on 2D mixed meshes. These successful developments laid a solid foundation for its 

efficient implementation and demonstration on arbitrary grids in 3D. 

Hybrid elements such as hex, prism, pyramid and tetrahedron will provide great geometrical 

flexibility for practical problems in 3D. In particular, for high Reynolds number flows in 

aerodynamic applications, prismatic cells have the advantages in accuracy and computational 

cost to resolve boundary layers near the wall. There have been several attempts to develop the 

DG method on arbitrary grid elements. In [34] different types of elements such as hex, prism and 

pyramid are projected onto a reference cube using collapsed Cartesian coordinates and 

hierarchical basis functions over the cube are used. Luo et.al. [26] presented a different approach 

based on the Taylor series expansion at the center of arbitrary element. Gassner et.al. [10] used 

polymorphic nodal element in the modal based formulation to reduce the cost of numerical 

integrations. However one obvious shortcoming of these formulations is the high computational 

cost of the surface and volume integrations coming from the weighted residual formulation. 

Another difficulty is the treatment of curvilinear boundary elements. The simple formulation of 

the CPR method is expected to alleviate the computational costs and facilitate the treatment of 

curved wall surfaces in a straightforward fashion.  
In the present study, we develop the CPR for solving the Euler and Navier-Stokes equations 

on 3D mixed meshes.  For the current implementation, tetrahedral and prismatic elements are 

considered with the intention to resolve viscous boundary layer flows efficiently. The remainder 

of this article is organized as follows. The basic formulation of the CPR method is described in 

the next section. In section 3, The discretization of the compressible Navier-Stokes equations is 

derived in the CPR framework. Subsequently, we discuss how to implement the CPR method 

efficiently in each particular element with curvilinear geometry in section 4. Section 5 presents 

the computational results for several benchmark problems, including accuracy studies on mixed 

unstructured grids. Conclusions for the present study and possible future works are summarize in 

section 6.  

 

2. Review of the Correction Procedure via Reconstruction Formulation 

 

We first review the CPR formulation for a hyperbolic conservation law, which can be written 

as 

 
  

∂Q

∂t
+ ∇ •

� 

F (Q) = 0,                     (2.1) 

with suitable initial and boundary conditions. Q is the vector of conserved variables, and   
� 

F  is the 

flux vector. Assume that the computational domain is discretized into N non-overlapping 

elements {Vi}. The weighted residual form of (2.1) on element Vi
 can be derived by multiplying 

(2.1) by an arbitrary weighting or test function W and integrating over Vi
, 

 

  

∂Q

∂t
WdV

Vi

∫ + W
� 

F (Q)•
� 
n dS

∂Vi

∫ − ∇W •
� 

F (Q)dW
Vi

∫ = 0.                              (2.2) 

Let Qi

h be an approximate solution to Q  at element Vi
. We assume that the solution belongs to the 

space of polynomials of degree k or less, i.e., Qi

h ∈ P
k , within each element without continuity 
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requirement across element interfaces. Then, we require that the numerical solution h

iQ  must 

satisfy (2.2), i.e., 

 

  

∂Qi

h

∂t
WdV

Vi

∫ + W
� 

F (Qi

h )•
� 
n dS

∂Vi

∫ − ∇W •
� 

F (Qi

h )dW
Vi

∫ = 0.                   (2.3) 

Because the approximated solution is in general discontinuous across element interfaces, the 

fluxes at the interfaces are not well defined. To evaluate a unique flux and also to provide 

element coupling, a common Riemann flux is used to replace the normal flux, i.e., 

 
  
F

n
(Qi

h
) ≡
� 

F (Qi

h
) •
� 
n ≈ ˜ F 

n
(Qi

h
,Qi+

h
,
� 
n ),                                              (2.4) 

where Qi+
h  is the solution from outside of the current element Vi

. Thus, Eq. (2.3) becomes 

 

  

∂Qi

h

∂t
WdV

Vi

∫ + W ˜ F n (Qi

h ,Qi+
h ,
� 
n )dS

∂Vi

∫ − ∇W •
� 

F (Qi

h )dW
Vi

∫ = 0.                    (2.5) 

If the space of W is chosen to be the same as the solution space, Eq. (2.5) is equivalent to the DG 

formulation. For the sake of a much simpler formulation, we wish to eliminate the test function. 

Applying integration by parts to the last term of (2.5), we obtain 

 

  

∂Qi

h

∂t
WdV

Vi

∫ + W∇ •
� 

F (Qi

h )dW
Vi

∫ + W ˜ F n (Qi

h,Qi+
h ,
� 
n ) − F n (Qi

h )[ ]dS
∂Vi

∫ = 0.               (2.6) 

Note that the surface integral coming from the last term of (2.5) is evaluated by only using the 

internal solution. The last term of (2.6) can be viewed as a penalty term, i.e., penalizing the 

normal flux differences 
  
[ ˜ F ] ≡ ˜ F 

n
(Qi

h
,Qi+

h
,
� 
n ) − F

n
(Qi

h
) . Let us introduce a “correction field” δi ∈ P

k , 

which is determined from the following relation defining the so-called “lifting operator” for [ ˜ F ]. 

 WδidV
Vi

∫ = W [ ˜ F ]dS
∂Vi

∫ .                                                      (2.7) 

Substituting (2.7) into (2.6), we obtain 

 

  

∂Qi

h

∂t
+ ∇ •

� 

F (Qi

h ) + δi

 

 
 

 

 
 WdV

Vi

∫ = 0.                                              (3.8) 

In the present study, in order to simplify the derivation we also approximate the flux divergence 

by polynomials of degree k or less, i.e. 
  
∇ •
� 

F (Qi

h
) ∈ P

k . If W is selected such that a unique solution 

exists, (3.8) is equivalent to  

 
  

∂Qi

h

∂t
+ ∇ •

� 

F (Qi

h ) + δi = 0,                                                     (2.9) 
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i.e., (2.9) is satisfied everywhere in element Vi
. With the definition of a correction field, we have 

successfully reduced the weighted residual formulation to an equivalent simple differential form, 

which does not involve any explicit surface or volume integrals. 

To find the approximate solution Qi

h, let the DOFs be the solution values at a set of points 

{ri, j}, named solution points (SPs). Then equation (2.9) must hold at the SPs, i.e., 

 
  

∂Qi, j

h

∂t
+ ∇ •

� 

F (Qi, j

h ) + δi, j = 0.                                                 (2.10) 

Obviously the correction field δi
 can be expressed in terms of δi, j

 using a Lagrange interpolation 

on the SPs, i.e.,  

 

  

δi = L j

SP (
� 
r i, j )δi, j

j

∑ ,                                              (2.11) 

where L
SP ∈ P

k  are the Lagrange polynomials based on the SPs. In the case of a non-linear flux 

vector, 
  

� 

F (Qi

h
) are not polynomials in general. In the present study, we approximate 

  

� 

F (Qi

h
) by 

polynomials of degree k to evaluate RHS of eq. (2.7). Thereby, we assume that the flux 

difference [ ˜ F ] is a polynomial on the faces of the element, and can be determined based on 

values of [ ˜ F ] f ,l
 at a set of flux points (FPs) 

,{ }f lr  using a Lagrange interpolation, i.e., 

 

  

[ ˜ F ] f = Ll

FP(
� 
r f ,l )[

˜ F ] f ,l

l

∑ ,  (2.12) 

where L
FP ∈ P

k are the Lagrange polynomials based on the FPs. Then, if the locations of the 

solution and flux points are specified and the weighting function W is chosen so as to have the 

same dimension as the correction field δi
, δi, j

 can be uniquely defined by solving the linear 

system derived from eq. (2.7). For simplex elements with straight faces, it can be expressed in 

the following formula 

 δi, j =
1

Vi

α j, f ,l[
˜ F ] f ,l S f

l

∑
f ∈∂Vi

∑ ,                                               (2.13) 

where α j, f ,l
 are constant coefficients independent of the solution. Substituting (2.13) into (2.10) 

we obtain the following equation 

 

  

∂Qi, j

h

∂t
+ ∇ •

� 

F (Qi, j

h ) +
1

Vi

α j, f ,l[
˜ F ] f ,l S f

l

∑
f ∈∂Vi

∑ = 0.                                  (2.14) 

One can clearly see that this is a collocation-like formulation with penalty-like term that comes 

from the element-wise correction polynomial to provide the coupling between elements. It can be 

shown that the location of SPs does not affect the numerical scheme for linear conservation laws 

[40,17]. For efficiency, the solution points are always chosen to coincide with the flux points. 

Therefore, any data interpolation is no longer needed for flux calculation, which dramatically 

reduces the computational cost. Any convergent nodal sets with enough points at the element 

interface are good candidates, e.g., those found in [3,15,49]. 
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Finally we want to make a remark on the relationship between the CPR formulation and other 

methods including DG, SV and SD methods. Starting from the weighted residual form of the 

governing equations, different formulations can be derived depending on the weighting function. 

For example, a nodal DG formulation is obtained by choosing weighting functions to be 

Lagrange polynomials, and a SV formulation is obtained by defining weighting functions as 

piecewise constant at the sub-cells. As a result, the only difference between those schemes 

appears in the correction coefficients. In the original work [45], it was shown that the resulting 

CPR scheme is basically conservative by using the correction coefficients for the DG, SV and 

SD scheme. In this study, we choose the weighting function to be one of the Lagrange 

polynomials based on the SPs, i.e., eq. (2.9) is identical to the DG formulation. 

 

3. Discretization of the Navier-Stokes Equations 

 

3.1. Governing Equations 

The 3D compressible Navier-Stokes equations can be written as a system of partial 

differential equations in conservation form: 

  
  

∂Q

∂t
+ ∇ •

� 

F c Q( )−
� 

F v Q,∇Q( )( )= 0, (3.1) 

where Q , 
  

� 

F c = [Fc

x,Fc

y,Fc

z ] and 
  

� 

F v = [Fv

x,Fv

y,Fv

z ] denote the conservative state vector, the inviscid and 

the viscous flux vectors, respectively, and are given by  

 
Q =

ρ

ρu

ρv

ρw

e

 

 

 
 
 
 
  

 

 

 
 
 
 
  

,   Fc

x =

ρu

ρu2 + p

ρuv

ρuw

e + p( )u

 

 

 
 
 
 
 
 

 

 

 
 
 
 
 
 

,   Fc

y =

ρv

ρuv

ρv 2 + p

ρvw

e + p( )v

 

 

 
 
 
 
 
 

 

 

 
 
 
 
 
 

,   Fc

z =

ρw

ρuw

ρvw

ρw 2 + p

e + p( )w

 

 

 
 
 
 
 
 

 

 

 
 
 
 
 
 

 (3.2) 

 

0 0 0

,   ,   

xx yx zx

x y z

xy yy zyv v v

xz yz zz

xx xy xz x yx yy yz y zx zy zz z

F F F

u v w q u v w q u v w q

τ τ τ

τ τ τ

τ τ τ

τ τ τ τ τ τ τ τ τ

     
     
     
     = = =
     
     
     + + − + + − + + −     

 (3.3) 

where ρ is the density,   
� 
v = [u,v,w] are the velocity vector, p is the pressure, e is the total energy 

per unit volume. The viscous stress tensor can be represented as 

 
  

τ = µ ∇
� 
v + ∇

� 
v ( )

T
−

2

3
∇ •
� 
v ( )I

 

 
 

 

 
  (3.4) 

where µ is the molecular viscosity coefficient, Ι is the unit tensor. The heat flux is given as 

 
  

� 
q = −c p

µ

Pr
∇T  (3.5) 



 

 

9

Here, c p
 is the specific heat capacity at constant pressure and T is the temperature. The Prandtl 

number Pr is assumed to be a constant of 0.72 in this study. For a perfect gas, the pressure is 

related to the total energy e by 

 e =
p

γ −1
+

1

2
ρ u2 + v 2 + w2( ). (3.6) 

The specific heat ratio γ  is set to be a constant, 1.4 for air. The computations for solving the 

Euler equations are performed by omitting the viscous flux. 

 

3.2. CPR Formulation of the Navier-Stokes Equations 

In order to discretize the Navier-Stokes equations, we follow a mixed formulation that is 

commonly used for the DG method[2, 6]. By introducing a new variable R = ∇Q, Eq. (3.1) is 

rewritten in a first order system as 

 ∂Q

∂t
+ ∇ ⋅ Fc Q( )− Fv Q,R( )( )= 0, (3.7) 

 R = ∇Q. (3.8) 

 

According to the CPR formulation by assuming Qi

h
,Ri

h ∈ P
k on discretized elements {Vi}, we 

obtain 

 

  

∂Qi, j

h

∂t
+ ∇ •

� 

F c (Qi, j

h ) −
� 

F v (Qi, j

h ,Ri, j

h )( )+
1

Vi

α j, f ,l [ ˜ F c ] f ,l − [ ˜ F v ] f ,l( )S f

l

∑
f ∈∂Vi

∑ = 0.                  (3.9) 

 

  

Ri, j

h = (∇Qi

h ) j +
1

Vi

α j, f ,l[
˜ Q ] f ,l

� 
n f S f

l

∑
f ∈∂Vi

∑ , (3.10) 

where 
  
[ ˜ F c ] ≡ ˜ F c

n
(Qi

h
,Qi+

h
,
� 
n ) − Fc

n
(Qi

h
), 

  
[ ˜ F v ] ≡ ˜ F v

n
(Qi

h
,Qi+

h
,∇Qi

h
,∇Qi+

h
,
� 
n ) − Fv

n
(Qi

h
,Ri

h
) and 

[ ˜ Q ] ≡ ˜ Q (Qi

h,Qi+
h ) − Qi

h . 

 

3.2.1. Inviscid Flux Calculation 

Here we consider the inviscid flux. We need to discretize the internal flux divergence and the 

common flux at the interface in (3.9). Instead of approximating the inviscid flux by the Lagrange 

interpolation on the SPs, the flux divergence is calculated “exactly” at the solution points with 

the chain rule (CR) approach 

 
  

∇ •
� 

F c(Qi, j

h ) =
∂
� 

F c(Qi, j

h )

∂Q
•∇Qi, j

h ,                                                        (3.11) 
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where 
  

∂
� 

F c

∂Q
 is the inviscid flux Jacobian matrix. Note that 

  
∇ •
� 

F c(Qi

h
)  is generally not a degree k 

polynomial, but it can be approximated by the Lagrange polynomial of degree k using the flux 

divergence at the solution points, i.e., 

 CR

c c , c ,( ) ( ) ( ) ( ),h h SP h

i i j i j i j

j

F Q F Q L r F Q∇ • ≈ ∇ • = ∇ •∑
� � ��                                  (3.12) 

This implies that the flux vector 
  

� 

F c
CR

(Qi

h
) belongs to P

k+1 which is one degree higher than the 

approximation of 
  

� 

F (Qi

h
) ∈ P

k  used in the correction term. The chain rule approach is known to be 

more accurate, though the resulting scheme is not strictly conservative due to the inconsistency 

between the approximated flux vectors in the flux divergence term and the correction term. 

However, it is also known that the mass conservation error is extremely small [45]. If 

conservation is absolutely required, one can use the Lagrange polynomial approach [17]. 

The common inviscid flux in [ ˜ F c ] can be obtained with any Riemann solver. In this paper, the 

Roe flux [32] is used for all the cases.  

 

3.2.2. Viscous Flux Calculation  

In the present study, we employ the BR2 scheme [2] to discretize the viscous flux. In (3.10), 

the common solution ˜ Q f ,l
 is simply the average of the solutions at both sides of f. The viscous 

fluxes at the solution points are evaluated by F
v (Qi, j

h ,Ri, j

h ). Then the viscous flux divergence is 

obtained through the Lagrange interpolation rather than the CR approach. In the correction term, 

the common viscous flux also needs to be determined. Besides the common solution, we also 

need to define a common gradient on face f. The common gradient is evaluated as 

 ∇Q f ,l

com =
1

2
∇Q f ,l

− + rf ,l

− + ∇Q f ,l

+ + rf ,l

+( ),                                 (3.13)  

where ∇Qf ,l

−  and ∇Qf ,l

+  are the gradients of the solution from the left and right cells, while rf ,l

−  and 

rf ,l

+  are the local lifting correction to the gradients only due to the common solution on face f  

 

  

rf ,l

± =
1

V
±

α l, f ,m[ ˜ Q ] f ,m

±
∓
� 
n f( )

m

∑ S f ,                              (3.14) 

where m is the index for the flux points on f and 
  

� 
n f  is the unit normal vector directing from left 

to right. Note that there is no summation over all faces of the element in eq. (3.14) in order to 

assure local property of the BR2 scheme.  

 

4. Discretization on Mixed Grids with Curved Boundary 

 

It can be observed that (2.9) is valid for arbitrary types of elements besides triangles and 

tetrahedrons. The current development for 3D hybrid meshes accommodates two kinds of 

element shapes, i.e., tetrahedron and triangular prism. Other types of element such as hexahedron 

and pyramid will be developed in the near future. The use of prismatic cells in addition to 

tetrahedral cells has the advantages in both accuracy and computational costs to resolve 

boundary layers near solid walls. In order to achieve an efficient implementation, all elements 
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are transformed from the physical domain (x, y, z) into a corresponding standard element in the 

computational domain (ξ, η, ζ) as shown in Fig. 1. Here we consider the transformations for the 

elements with curved sides (faces and edges). The discretization for the curved elements is 

conducted in the same way as the straight sided elements by applying the CPR formulation in the 

standard elements. In the present study, a quadratic triangular face is employed to represent 

curved wall boundaries. For the sake of computational efficiency, the quadratic representation is 

adopted for only one of the faces of tetrahedron which will be attached to the wall in inviscid 

flows, and for only two triangular faces of prism which will be used in the thin layers of prism 

cells to assure the quality of the element shape especially in high Reynolds number flows.  

Based on a set of locations of nodes defining the shape of element, a set of shape functions 

can be obtained [50]. Once the shape functions M i(ξ,η,ς)  are given, the transformation can be 

written as 

 
x

y

z

 

 

 
 
 

 

 

 
 
 

= M i(ξ,η,ς )
i=1

K

∑
x i

y i

zi

 

 

 
 
 

 

 

 
 
 
,                                                        (4.1) 

where K is the number of points used to define the physical element, ( xi
, yi

, zi
) are the Cartesian 

coordinates of those points. For the transformation given in (4.1), the Jacobian matrix J  takes the 

following form 

 J =
∂(x, y,z)

∂(ξ,η,ζ )
=

xξ xη xζ

yξ yη yζ

zξ zη zζ

 

 

 
 
 

 

 

 
 
 

.                                                  (4.2) 

For a non-singular transformation, its inverse transformation must also exist, and the Jacobian 

matrices are related to each other according to 

 ∂(ξ,η,ζ )

∂(x, y,z)
=

ξx ξy ξ z

ηx ηy ηz

ζ x ζ y ζ z

 

 

 
 
 

 

 

 
 
 

= J
−1

.                                                  (4.3) 

The governing equations in the physical domain are then transformed into the computational 

domain (standard element), and the transformed equations take the following form 

 ∂ ˜ Q 

∂t
+

∂F
ξ

∂ξ
+

∂F
η

∂η
+

∂F
ζ

∂ζ
0,                                                     (4.4) 

where 
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˜ Q = J ⋅ Q,

Fξ = J ⋅ ξxF
x + ξyF

y + ξzF
z( ),

F
η = J ⋅ ηxF

x + ηyF
y + ηzF

z( ),
Fζ = J ⋅ ζ xF

x + ζ yF
y + ζ zF

z( ).

                                                 (4.5) 

Let 
  

� 

S ξ = J ξx,ξy,ξ z( ), 
  

� 

S η = J ηx,ηy ,ηz( ) and 
  

� 

S ζ = J ζ x ,ζ y,ζ z( ). Then we have 
  
F

ξ =
� 

F •
� 

S ξ , 
  
F

η =
� 

F •
� 

S η  and 

  
F

ζ =
� 

F •
� 

S ζ . In our implementation, J , 
  

� 

S ξ , 
  

� 

S η  and 
  

� 

S ζ  are stored at the solution points. Note that 

here we consider the Euler equations as the governing equations for brevity’s sake. Extending 

the following discretization to the Navier-Stokes equations is straightforward. 

Discretization on a Standard Tetrahedron 

On a standard tetrahedron, the CPR formulation in eq. (2.14) can be rewritten as 

 

  

∂ ˜ Q i, j

h

∂t
+ ∇(ξ ) •

� 

F (ξ )( ˜ Q i, j

h ) +
1

V
(ξ )

α j, f ,l[
˜ F (ξ )] f ,l S f

(ξ )

l

∑
f ∈∂V

∑ = 0,                              (4.6) 

where superscript (ξ) means the variables or operations evaluated on the computational domain. 

For example, [ ˜ F 
(ξ )] are the normal jumps of the transformed fluxes across the faces of the 

standard element. The transformed normal flux can be expressed in terms of the flux in the 

physical space as 

 

  

� 

F n
(ξ )

f ,l
=
� 

F 
(ξ )

f ,l
•
� 
n 

(ξ )

f

         =
� 

F 
f ,l

•
� 

S ξ
f ,l

n
ξ

f
+
� 

F 
f ,l

•
� 

S η
f ,l

n
η

f
+
� 

F 
f ,l

•
� 

S ζ
f ,l

n
ζ

f

         =
� 

F 
f ,l

•
� 

S n
f ,l

=
� 

F n
f ,l

•
� 

S n
f ,l

,

               (4.7) 

  
 

Figure  1. Transformations of a curve boundary tetrahedral and prismatic cell to the standard 

elements. 
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where   
� 
n (ξ ) = [nξ ,nη ,nζ ] is a unit normal vector on a straight face of the standard element, and 

  

� 

S n  is 

a normal vector on a face in the physical space defined as 
  

� 

S n =
� 

S ξ n
ξ +
� 

S η n
η +
� 

S ζ n
ζ .  

  Note that solving Eq. (4.4), ˜ Q = J ⋅ Q  are the solution unknowns, and are assumed to be degree 

k polynomials in the computational domain instead of Q. As a result, the derivatives of Q should 

be calculated in the following way, 

 

∂Q

∂ξ
=

1

J

∂ J Q( )
∂ξ

−
∂ J

∂ξ
Q

 

 
 
 

 

 
 
 
,  

∂Q

∂η
=

1

J

∂ J Q( )
∂η

−
∂ J

∂η
Q

 

 
 
 

 

 
 
 
,  

∂Q

∂ζ
=

1

J

∂ J Q( )
∂ζ

−
∂ J

∂ζ
Q

 

 
 
 

 

 
 
 
.     (4.8) 

In 3D, to construct a complete polynomial of degree k, at least k(k+1)(k+2)/(1x2x3) SPs need 

to be chosen. In order to achieve the most efficient implementation, SPs on edges are chosen to 

be the Legendre-Gauss Lobatto (LGL) points. For 4th- or higher order schemes, nodes inside the 

boundary triangle are chosen from [15]. For 5th- or higher order schemes, nodes inside the 

tetrahedron are chosen from [49]. The nodal set of the 4th-order CPR scheme is shown in Fig. 2. 

Note that the flux difference at a flux point corrects all solution points as shown in (4.6). 

 

Discretization on Standard Prism 

For a standard triangular prism, the solution polynomial can be expressed as a tensor product 

of a 1D and 2D Lagrange polynomial, i.e.,  

 ˜ Q i
h (ξ,η,ζ ) = ˜ Q i; j ,k

h
L j (ξ,η)Lk (ζ ),

j=1

∑
k=1

∑                                              (4.9) 

where ˜ Q i; j ,k

h  are the state variables at the solution point (j,k), with j the index in ξ-η plane and k 

the index in ζ direction, L j (ξ,η) 
is a 2D Lagrange polynomial in a triangle and Lk (ζ ) is a 1D 

Lagrange polynomial in a segment. Figure 3 shows the locations of the solution points for k=3. 

The nodal sets on the edge and the triangle are chosen in the same manner with the tetrahedral 

element.  

For the extension of the CPR method to 2D quadratic elements [17], the solution procedure 

reduces to a series of one-dimensional operations, i.e., the solution polynomial is represented as a 

tensor product of 1D Lagrange polynomials and the correction due to flux difference is 

performed in a one-dimensional manner. The CPR formulation for a standard prism can be 

derived in an analogous fashion as 

  

  

∂ ˜ Q 
i; j ,k

h

∂t
+ ∇(ξ ) •

� 

F 
(ξ )

( ˜ Q i; j,k

h
) +

1

VTri

(ξ )
α j , f ,l[

˜ F 
(ξ )

(ξ f ,l ,η f ,l ,ζ k )]S f

(ξ )

l

∑
f ∈∂VTri

∑

+ ˜ F ζ (ξ j ,η j ,−1) − Fζ (ξ j ,η j ,−1)[ ] ′ g L (ζ k ) + ˜ F ζ (ξ j ,η j ,1) − Fζ (ξ j ,η j ,1)[ ] ′ g R (ζ k ) = 0.

      (4.10) 

The correction process is done in a decoupled manner.  The third term is the correction of the 

flux components in ξ and η direction, which is computed on a plane with fixed ζ = ζ k. This is 

nothing but the correction used in the 2D CPR method for a triangular element. In eq. (4.10), VTri 

is the area of triangle, Sf the length of the edge f and l the index for flux points on f. Note that, 

[ ˜ F (ξ f ,l ,η f ,l ,ζ k )] corrects only the solution points on the triangle with fixed k instead of all solution 

points in the element as shown in Fig. 3 (a). The last two terms denote the correction in the ζ  
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direction, which is evaluated by the 1D CPR method [17]. gL and gR are the correction functions 

for the left and right end points of a segment. The flux difference at an end point corrects only 

the solution points on the segment with fixed j as shown in Fig. 3 (b). For prism cells, the 

number of solution points corrected by a flux point is smaller than the one for tetrahedral cells 

due to the decoupled correction procedure. Hence, the method for prisms is more efficient per 

DOF than for tetrahedrons. This decoupled procedure also facilitates the implementation 

employing different degrees of polynomials in ξ-η and ζ directions to adapt to flow features. An 

attempt employing higher order polynomials in the wall normal direction to resolve the boundary 

layer with coarser prism cells is shown in a later section.  

 

In order to simplify the implementation for mixed grids, we assume the polynomial degree k 

to be the same for both the tetrahedral and prismatic elements. Furthermore, the flux points along 

the element interfaces are required to match each other. In the present implementation, the flux 

points are selected to be the LGL points at each edge for all tetrahedral and prismatic elements.  

 

 

 
 

Figure 2. Solution points in the standard tetrahedral cell for degree k=3 polynomial (only 

points on the visible faces are shown). 
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5. Numerical Results 

5.1. Test cases for the Euler Equations 

5.1.1. Accuracy Study with Vortex Evolution Problem 

To assess the order of accuracy of the developed method, the propagation of an isentropic 

vortex in inviscid flow is computed with successive grid refinement. This is an idealized problem 

for the Euler equations in 2D used by Shu [35]. Here we consider simple extension of this 

problem to the 3D domain [0, 10]x[0, 10]x[0, 10]. The mean flow is {ρ, u, v, w, p}={1, 1, 1, 0, 

1}. An isotropic vortex is then added to the mean flow, i.e., with perturbations in u, v, and 

temperature T = p/ρ, and no perturbation in entropy S = p/ ργ :  

 
δu = −y 

ε

2π
e

0.5(1−r 
2 )

,  δv = x 
ε

2π
e

0.5(1−r 
2 )

,  δw = 0

δT = −
(γ −1)ε2

8γπ 2
e1−r 

2

,  δS = 0,

      (5.1) 

where r 
2 = x 

2 + y 
2, x = x − 5 , y = y − 5 , and the vortex strength ε = 5 . If the computational domain 

is infinitely big, the exact solution of the Euler equations with the above initial condition is just 

the passive convection of the isentropic vortex with the mean velocity (1, 1, 0). In the numerical 

simulation, we impose the exact solution on the boundaries. 

The computations are carried out until t=2 on two different types of grids, tetrahedral meshes 

and prismatic meshes. In generating computational grids, first an equidistant Cartesian grid of 

NxNxN cells is assumed for the cubic domain and each cell is further divided into six 

tetrahedrons or two prisms. Three different grids are employed with N=10, 20 and 40 for each 

type of cell. For the time integration, a 3rd-order Runge-Kutta explicit scheme is used. The L1
 

                
Figure 3. Solution points in the standard prism cell for degree k=3 polynomial (only points on 

the visible faces are shown). (a) shows the correction in  the ξ and η derections. (b) shows the 

correction in the ζ direction. 
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and L∞
 norms of density error at the solution points are presented for tetrahedral grids and 

prismatic grids in Table 1 and 2, respectively. The CPR-DG method performs very well on both 

types of grid, achieving the nearly optimal order of accuracy up to 6th-order in tetrahedral 

meshes and 4th-order in prismatic meshes. 

 

5.1.2. Subsonic Inviscid Flow over a Sphere 

In order to verify the developed Euler solver on a mixed mesh with curved wall boundary, a 

typical steady test case of a subsonic flow around a sphere is considered. The freestream Mach 

number is M=0.3. Two computational grids are employed. One is a purely prismatic grid and the 

other is a mixed grid shown in Figures 4 (a) and 5 (a). The mixed grid is composed of five layers 

of prismatic cells around the quarter sphere and isotropic tetrahedral cells for the remaining 

region. To preserve the geometry of the sphere well with a relatively coarse mesh, the curved 

wall boundaries are represented by quadratic polynomials.  

The computed density contours obtained with the 2nd- to 4th-order schemes are shown at 

Figure 4 (b)-(d) and Figure 5 (b)-(d). In both grids, the trends of improvement in the solution by 

increasing the order of discretization are similar. The computed density contours using the 4th 

order scheme appear to be perfectly symmetric without visible numerical dissipation and also 

quite smooth across the interface between prismatic and tetrahedral cells. In this case, a block 

LU-SGS implicit scheme [36,13] was used to obtain steady solutions efficiently, and all the cases 

converged to machine zero. 

 

5.2. Test cases for the Navier-Stokes Equations 

5.2.1. Accuracy Study with Couette Flow Problem 
A laminar flow between two parallel walls is considered here to verify the discretization of 

viscous effects. The distance between the walls is set to H=10 and the computational domain is 

chosen to be the cube of [0, 10]x[0, 10]x[0, 10]. The speed of the moving upper wall (y=10) in 

the x direction is U=0.3. The temperatures of the lower wall (y=0) and the upper one are T0=0.8 

and T1=0.85 respectively. The analytical solution for this case is 

 

u =
y

H
U,  v = 0, w = 0,

T = T0 +
y

H
T1 − T0( )+

µU
2

2k

y

H
1−

y

H

 

 
 

 

 
 ,

p = p0,  ρ =
γp

T
,

                                                 (5.2) 

where γ is specific heat ratio and k is thermal conductivity. The static pressure is set to p0=1/γ 

and the viscosity of the fluid is assumed to be µ=0.01. The flow variables at boundary faces are 

simply fixed to the exact solution.  

Three successively refined prism grids are generated with N=2, 4 and 8 in the same way as in 

the vortex propagation case. Each cube is split into two prisms by the plane which is 

perpendicular to the y=0 plane. The error norms for the BR2 formulation are presented in Table 

3. The density is used to evaluate the error. It is shown that nearly the formal order of accuracy is 

achieved for the 2nd- to 4th-order schemes.  
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5.2.2. Boundary Layer Flow over a Flat Plate 

The laminar boundary layer flow over a plate is then computed using the CPR method. The 

Reynolds number based on the plate length is Rex =10,000 and the freestream Mach number is 

M=0.2. The plate length L is set to 1. The boundary layer thickness at the trailing edge is 

estimated by the approximate relation δ = 5L / Rex
. The computational domain is selected to be (-

2≤x≤1, 0≤y≤100δ, ≤z≤δ). Note that the domain size in the y-direction is chosen to be large 

enough not to affect the results especially in the v-velocity profiles. The freestream values are 

specified at the inflow boundary at x=-2 and the top boundary at y=100δ. For the lower boundary 

at y=0, the symmetry conditions are used on the upwind side to the wall (-2≤x≤0) and the 

adiabatic wall conditions are imposed on the wall (0≤x≤1). At the outflow boundary at x=0, only 

static pressure is prescribed. On the side boundaries at z=0 and δ, the symmetric conditions are 

assumed. First, we generated a three dimensional Cartesian mesh. The grid cells are clustered 

near the leading edge and the cell sizes are increased geometrically in both x- and y-directions. In 

the spanwise z-direction, we generate only one cell. Then we divide each hexahedral cell into 

two prisms to obtain a purely prismatic grid.  

The computed u and v velocity profiles are compared with the Blasius’s solution in Fig. 6. 

The computational grid used for the computations is generated to have 4 cells in the boundary 

layer at x=1.0 and 13 cells along the plate. The solution is apparently getting more accurate with 

the increasing of the order of polynomial approximation, and it is more clearly shown in the 

comparison of v-profiles. The computed skin friction coefficients on the wall are also plotted at 

Figure 7. The agreement with the Blasius’s solution also becomes better with p-order refinement.   

One of the concerning issues when we apply CFD solver to engineering problems is the 

stiffness arising from using high aspect ratio cells that are clustered near the solid wall to resolve 

the boundary layer especially in high Reynolds number flows. Reynolds numbers appearing in 

aerospace flow problems usually become ~10
6
 or more, and so even if we make use of an 

implicit time integration scheme for numerical simulations, we will likely encounter still small 

time step restriction or deteriorated convergence rate. A possible remedy for this problem is 

employing a line solver [27,8]. Here we consider another approach to alleviate the stiffness issue 

by employing higher-order prism elements rather than having large number of lower order 

elements in the boundary layer. Since we use a tensor basis polynomial in prisms, we can use 

higher order polynomial only in the normal direction to the wall while using lower order one in 

the tangential directions to the wall so as to prevent the unnecessary increase of the 

computational cost.    

Figure 8 shows the computed Mach number by using polynomials of degree 5 in the y-

direction and polynomials of degree 2 in x- and z- directions. The grid has only two cells in the 

boundary layer at x=1.0 and 17 cells along the plate. The numbers of prism cells and DOFs are 

728 and 26208 respectively. For comparison, we generated another grid that has more cells in the 

boundary (8 cells at x=1.0) but the same resolution in the x- and z-directions and employed 

degree 2 polynomials in all directions, resulting 1736 prisms and 31248 DOFs.  In Fig. 9, the 

computed v-velocity profiles are shown. The computed profiles agree well with each other and 

also with the Blasius’s solution. The convergence histories are compared in Fig. 10. The 

computations were performed using the LU-SGS scheme with the same time step. Compared to 

the computation using the lower order scheme with the finer grid, employing the higher order 

scheme with less grid cells gave the reductions of about 38% and 30 % in terms of Time steps 

and CPU times to reach machine zero residual, although the DOFs are about 16% less than the 

other’s one.  
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5.2.3. Steady Subsonic Flow over a Sphere at Re=118 

A steady viscous flow around a sphere is computed to validate the developed NS solver on a 

full 3D mixed mesh. The Reynolds number based on the diameter was chosen to be 118 so that 

we can compare the obtained results with experimental data [37] and numerical results using the 

SD scheme [36,44]. The Mach number is 0.2535 that is the same value in the reference 

computations. The mesh is generated to have five layers of prism cells and isotropic tetrahedral 

cells for the remaining region. We plot the cut of the grid on a plane with y=0 and surface mesh 

on the sphere in Fig. 11. The total number of mixed cells is 24,334. 

The computations were performed using the 2nd- to 4th-order schemes. The computed Mach 

number contours  and streamlines near wake using the 4th-order CPR scheme are shown in Fig. 

12 and Fig. 13, respectively. We confirmed that the computed streamlines and the size of 

separation region agree well with both the experimental picture and the numerical results in the 

references. Here we only show a comparison of the computed skin friction profiles at the cross 

section (y=0) of the sphere in Fig. 14. The skin friction coefficients computed by the 4th-order 

CPR scheme and the 6th-order SD scheme are right on top of each other. The 3rd-order CPR 

result also agrees well with other results, though one can see only minor differences between 

those profiles. The predicted separation angle using the 4th-order CPR scheme is 123.6 deg (the 

wind side stagnation point has an angle of 0), which is identical to the value predicted by the 6th-

order SD scheme. In Fig. 15, the computed drag coefficient by 4th-order CPR is compared to 

available experimental data. The agreement is also very good. 

 

5.2.4. Unteady Subsonic Flow over a Sphere at Re=300 

We consider an unsteady flow case over the sphere with radius r=1 at the Reynolds number of 

300 based on the diameter of the sphere. The inflow Mach number is assuemed to be 0.3 in this 

case. Te computational mesh is shown Fig 16. To resolve shedding vortices, the mesh is 

generated to have finer cells in the wake region. The total number of mixed cells is 54,312. Local 

grid size around the sphere is ~0.2 and the size in the wake region is =0.8. In this case, we 

employed the 3rd-order TVD Runge-Kutta method for the time integration and computed by the 

MPI parallelized code using 8 cores of a cluster machine to reduce the wall clock time.   

 The computed Q isosurface colored by local Mach number using the 4th-order CPR scheme 

is shown in Fig. 17. 

The obtained plain symmetric wake vortex structure is comparable to the available experimental 

and computational results in [10,20] at least qualitatively. In Fig. 18 we plot the history of the 

drag coefficient Cd in terms of non-dimensional time t. The computed drag coefficient and the 

oscillating amplitude of drag and the Strouhal number Str are shown in the Table 4. For 

comparison, results from Gassner [10] using the 4th-order DG scheme on tetrahedral grid and 

from Tomboulides [38] and Johnson and Patel [20] obtained by incompressible simulation, are 

shown as well. The results computed by the CPR method reasonably agree with those reference 

values.  
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Table 1. Test of CPR-DG for vortex propagation problem (tetrahedral grids). 

 

Polynomial  

degree k 

Grid size L1 error L1 order L∞ error L∞ order 

 

1 

 

10x10x10x6 5.23e-3 - 9.56e-2 - 

20x20x20x6 1.42e-3 1.88 3.57e-2 1.42 

40x40x40x6 3.43e-4 2.05 9.76e-3 1.87 

      

 

2 

 

10x10x10x6 1.68e-3 - 6.06e-2 - 

20x20x20x6 2.61e-4 2.69 1.19e-2 2.35 

40x40x40x6 3.77e-5 2.79 1.51e-3 2.98 

      

 

3 

 

10x10x10x6 4.00e-4 - 2.05e-2 - 

20x20x20x6 2.44e-5 4.04 1.67e-3 3.62 

40x40x40x6 1.33e-6 4.20 1.00e-4 4.06 

      

 

5 

10x10x10x6 5.66e-5  2.34e-3  

20x20x20x6 9.70e-7 5.87 7.78e-5 4.91 

 

Table 2. Test of CPR-DG for vortex propagation problem (prismatic grids).  

 

Polynomial  

degree k 

Grid L1 error L1 order L∞ error L∞ order 

 

1 

 

10x10x10x2 7.37e-3 - 1.34e-1 - 

20x20x20x2 2.12e-3 1.80 4.85e-2 1.47 

40x40x40x2 5.19e-4 2.03 1.19e-2 2.03 

      

 

2 

 

10x10x10x2 2.17e-3 - 4.77e-2 - 

20x20x20x2 2.67e-4 3.02 8.65e-3 2.46 

40x40x40x2 2.88e-5 3.21 1.04e-3 3.06 

      

 

3 

 

10x10x10x2 4.36e-4 - 1.54e-2 - 

20x20x20x2 2.70e-5 4.01 1.43e-3 3.43 

40x40x40x2 1.64e-6 4.04 9.38e-5 3.93 

 



 

 

20

   
(a) Mesh                                        (b) k=1 

 
(c) k=2                                                    (d) k=3 

Figure 4. Prismatic grid and computed density contours for flow around a sphere. 

 
(a) Mesh                                             (b) k=1                                    

 
(c) k=2                                                    (d) k=3 

Figure 5. Mixed grid (tetrahedrons and prisms) and computed density contours for flow around a sphere. 
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Table 3. Test of CPR-DG (BR2) for Couette flow problem (prismatic grids). 

 

Polynomial  

degree k 

Grid L1 error L1 order L∞ error L∞ order 

 

1 

 

2x2x2x2 5.5525e-4 - 2.4030e-3 - 

4x4x4x2 1.1909e-4 2.221 3.9968e-4 2.588 

8x8x8x2 3.1063e-5 1.939 1.1574e-4 1.788 

      

 

2 

 

2x2x2x2 8.1732e-6 - 2.0928e-5 - 

4x4x4x2 1.2867e-6 2.667 3.3742e-6 2.633 

8x8x8x2 1.6758e-7 2.941 5.4916e-7 2.619 

      

 

3 

 

2x2x2x2 2.6248e-7 - 8.1984e-7 - 

4x4x4x2 2.0331e-8 3.690 5.7014e-8 3.846 

8x8x8x2 1.3907e-9 3.870 4.2087e-9 3.760 

 

 

 

 

 
Figure 6. Comparisons of velocity profiles in the boundary layer at x=0.5. u- and v-profiles 

on the left and right. 

 
Figure 7. Comparison of the skin friction 

coefficient along the plate. 



 

 

22

 
 

 

 
Figure 10. Comparisons of the convergence histories using different degrees of polynomial 

and grids. 

Figure 8. Grid and Mach number contours using the 

CPR scheme with polynomials of degree 5 in the y-

direction (y direction stretched by factor 10). 

 

 
Figure 9. Comparison of v-velocity profiles using 

different degrees of polynomial and grids. 
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Figure 13. Computed streamlines using 

the 4th-order CPR scheme near the wake 

region behind the sphere. 

 
Figure 12. Computed pressure (on the 

sphere) and Mach number (on y=0 plane) 

distributions using the 4th-order CPR 

scheme. 

 
Figure 11. Computational grid around a sphere for 

the steady viscous flow over a sphere. 
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Figure 16. Computational grid around a sphere for the unsteady viscous flow over a sphere. 

(Left: Entire grid, Right: Grid around the sphere.)

 

 
Figure 14. Comparison of computed skin 

friction coefficients using the 3rd- and 4th-

order CPR schemes and 6th-order SD 

scheme[38].  

 
Figure 15. Comparison between the 

computed drag coefficient using the 4th-

order CPR scheme and experimental data 

for a sphere. 



 

 

25

 
Figure 17. Computed Q isosurface in the 

wake region of the viscous laminar flow 

over a sphere at Re=300. 

 

 
 

Figure 18. Time history of the drag 

coefficient. 

 

Table 4. Comparisons of the averaged drag coefficient, the amplitude of drag and the Strouhal 

number. 

 

Method Cd ∆Cd Str 

Present (LCP) 

Gassner [10] 

Tomboulides [38] 

Johnson & Patel 

[20] 

0.670 

0.673 

0.671 

0.656 

0.0032 

0.0031 

0.0028 

0.0035 

0.131 

0.135 

0.136 

0.137 

 

6. Conclusion 

The CPR method is successfully extended to 3D hybrid unstructured meshes using tetrahedral 

and prismatic elements. The CPR formulation for tetrahedral elements is directly derived in the 

same manner for 2D triangular elements and the one for prism is obtained by just a combination 

of the 1D and 2D schemes. The resulting scheme needs no explicit integrations and no data 

reconstructions. This numerical efficiency is more significant in 3D simulations in comparison to 

2D simulations because numerical complexities involved in high-order quadratures and 

reconstructions rapidly increase in 3D.      

The developed CPR scheme is verified with grid convergence studies for an inviscid flow and 

a viscous flow, indicating that the developed scheme is capable of achieving nearly the optimal 

order of accuracy. Then, several validation cases are computed for solving the 3D Euler 

equations and the 3D NS equations. The CPR method performs very well to obtain high-order 

accurate solution for all cases. Future studies include extension to adopt hexahedral and 

pyramidal cells for more flexible geometry discretizations and hp-adaptation techniques for 

realizing practical high accurate CFD simulations. 

 



 

References 

[1] F. Bassi, S. Rebay, A high-order accurate discontinuous finite element method for the 

numerical solution of the compressible Navier–Stokes equations, J. Comput. Phys. 131 (1) 

(1997) 267–279.  

[2] F. Bassi, S. Rebay, GMRES discontinuous Galerkin solution of the compressible Navier–

Stokes equations, in Lecture Note in Computational Science and Engineering 11, Springer 

Verlag, New York, (2000), 197-208.  

[3] Q. Chen, I. Babuska, Approximate optimal points for polynomial interpolation of real 

functions in an interval and in a triangle, Comput. Methods Appl. Mech. Eng. 128 (1995) 405–

417.  

[4] B. Cockburn, S.-Y. Lin, C.-W. Shu, TVB Runge–Kutta local projection discontinuous 

Galerkin finite element method for conservation laws III: one-dimensional systems, J. Comput. 

Phys. 84 (1989) 90–113. 

[5] B. Cockburn, C.-W. Shu, TVB Runge–Kutta local projection discontinuous Galerkin finite 

element method for conservation laws II: general framework, Math. Comput. 52 (1989) 411–

435.  

[6] B. Cockburn, C.-W. Shu, The local discontinuous Galerkin methods for time-dependent 

convection diffusion systems, SIAM J. Numer. Anal. 35 (1998) 2440–2463. 
[7] B. Cockburn, C.-W. Shu, The Runge–Kutta discontinuous Galerkin method for 

conservation laws V: multidimensional systems, J. Comput. Phys. 141 (1998) 199–224.  

[8] K.J. Fidkowski, T.A. Oliver, J. Lu, D.L. Darmofal, p-Multigrid solution of high-order 

discontinuous Galerkin discretizations of the compressible Navier-Stokes equations. J Comput. 

Phys. 207 (2005), 92-113. 

[9] H. Gao, Z.J.Wang, A high-order lifting collocation penalty formulation for the Navier-

Stokes equations on 2D mixed grids, AIAA Paper 2009-3784. 

[10] G. J. Gassner, F. Lorcher, C-D. Munz, and J. S. Hesthaven, Polymorphic nodal elements 

and their application in discontinuous Galerkin methods, J. Comput. Phys. 228 (2009), 1573-

1590. 

[11] S.K. Godunov, A finite-difference method for the numerical computation of 

discontinuous solutions of the equations of fluid dynamics, Mat. Sb. 47 (1959) 271.  

[12] T. Haga, M. Furudate, K. Sawada, RANS simulation using high-order spectral volume 

method on unstructured tetrahedral grids, AIAA Paper, 2009-404. 

[13] T. Haga, K. Sawada, Z.J. Wang, An implicit LU-SGS scheme for the spectral volume 

method on unstructured tetrahedral grids, Communications in Computational Physics, Vol. 6, 

No. 5, pp. 978-996 (2009). 

[14] R. Harris, Z.J. Wang, Y. Liu, Efficient quadrature-free high-order spectral volume 

method on unstructured grids: theory and 2D implementation, J. Comput. Phys. 227 (3) (2008) 

1620–1642. 

[15] J.S. Hesthaven, From electrostatics to almost optimal nodal sets for polynomial 

interpolation in a simplex, SIAM J. Numer. Anal. 35 (2) (1998) 655–676.  

[16] J.S. Hesthaven, Tim Warburton, Nodal Discontinuous Galerkin Methods, Springer, 2008. 

[17] H.T. Huynh, A flux reconstruction approach to high-order schemes including 

discontinuous Galerkin methods, AIAA Paper 2007-4079.  

[18] H.T. Huynh, A Reconstruction Approach to High-Order Schemes Including 

Discontinuous Galerkin for Diffusion, AIAA Paper 2009-403. 



 

[19] A. Jameson, Analysis and design of numerical schemes for gas dynamics. I. Artificial 

diffusion, upwind biasing, limiters and their effect on accuracy and multigrid convergence, Int. J. 

Comput. Fluid Dyn. 4 (1994) 171–218.  

[20] T. A. Johnson and V. C. Patel, Flow past a sphere up to a Reynolds number of 300, J. 

Fluid Mech. 378 (1999), 19-70. 

[21] D.A. Kopriva, J.H. Kolias, A conservative staggered-grid Chebyshev multidomain 

method for compressible flows, J. Comput. Phys. 125 (1996) 244.  

[22] M.-S. Liou, A sequel to AUSM, Part II: AUSM+-up for all speeds, J. Comput. Phys. 214 

(2006) 137–170.  

[23] Y. Liu, M. Vinokur, Z.J. Wang, Discontinuous spectral difference method for 

conservation laws on unstructured grids, in: Proceedings of the Third International Conference 

on Computational Fluid Dynamics, Toronto, Canada, July 12–16, 2004.  

[24] Y. Liu, M. Vinokur, Z.J. Wang, Discontinuous spectral difference method for 

conservation laws on unstructured grids, J. Comput. Phys. 216 (2006) 780– 801.  

[25] Y. Liu, M. Vinokur, Z.J. Wang, Spectral (finite) volume method for conservation laws on 

unstructured grids V: extension to three-dimensional systems, J. Comput. Phys. 212 (2006) 454–

472.  

[26] H. Luo, J. Baum and R. Lohner, A discontinuous Galerkin method based on a Taylor 

basis for the compressible flows on arbitrary grids, J. Comput. Phys. 227 (2008), 8875-8893. 
[27] D.J. Mavriplis, Multigrid strategies for viscous flow solvers on anisotropic unstructured 

meshes. J Comput. Phys. 145 (1998) 141-165 

[28] G. May, A. Jameson, A spectral difference method for the Euler and Navier–Stokes 

equations, AIAA Paper No. 2006-304, 2006.  

[29] C.R. Nastase, D.J. Mavriplis, High-order discontinuous Galerkin methods using an hp-

multigrid approach, J. Comput. Phys. 213 (2006) 330–357.  

[30] S. Osher, Riemann solvers, the entropy condition, and difference approximations, SIAM 

J. Numer. Anal. 21 (1984) 217–235.  

[31] W.H. Reed, T.R. Hill, Triangular mesh methods for the neutron transport equation, Los 

Alamos Scientific Laboratory Report, LA-UR-73-479, 1973.  

[32] P.L. Roe, Approximate Riemann solvers, parameter vectors, and difference schemes, J. 

Comput. Phys. 43 (1981) 357–372.  

[33] V.V. Rusanov, Calculation of interaction of non-steady shock waves with obstacles, J. 

Comput. Math. Phys. USSR 1 (1961) 261–279. 

[34] S. J. Sherwin, and G. E. Karniadakis, A new triangular and tetrahedral basis for high-

order (hp) finite element methods, Int. J. Num. Meth. Eng., 38 (1995), 3775-3802.  

[35] C.-W. Shu, Essentially non-oscillatory and weighted essentially non-oscillatory schemes 

for hyperbolic conservation laws, in: B. Cockburn, C. Johnson, C.-W. Shu, E. Tadmor (Eds.), 

Advanced Numerical Approximation of Nonlinear Hyperbolic Equations, in: A. Quarteroni 

(Ed.), Lecture Notes in Mathematics, vol. 1697, Springer, 1998, pp. 325–432.  

[36] Y. Sun, Z.J. Wang and Y. Liu, High-Order Multidomain Spectral Difference Method for 

the Navier-Stokes Equations on Unstructured Hexahedral Grids, Communications in 

Computational Physics, Vol. 2, No. 2, pp. 310-333 (2007). 

[37] S. Taneda, Experimental investigations of the wake behind a sphere at low Reynolds 

numbers, J. Phys. Soc. Japan, 11 (1956), 1104-1108.  

[38] A. G. Tomboulides and S. A. Orszag, Numerical investigation of transitional and weak 

turbulent flow past a sphere, J. Fluid Mech. 416 (2000), 45-73. 



 

[39] K. Van den Abeele, C. Lacor, An accuracy and stability study of the 2D spectral volume 

method, J. Comput. Phys. 226 (1) (2007) 1007–1026.  

[40] K. Van den Abeele, C. Lacor, Z.J. Wang, On the stability and accuracy of the spectral 

difference method, J. Sci. Comput. 37 (2) (2008) 162–188.  

[41] B. van Leer, Towards the ultimate conservative difference scheme V. A second order 

sequel to Godunov’s method, J. Comput. Phys. 32 (1979) 101–136.  

[42] B. Van Leer, S. Nomura, Discontinuous Galerkin for diffusion, AIAA Paper No. 2005-

5108, 2005.  

[43] Z.J. Wang, Spectral (finite) volume method for conservation laws on unstructured grids: 

basic formulation, J. Comput. Phys. 178 (2002) 210–251.  

[44] Z.J. Wang, High-order methods for the Euler and Navier–Stokes equations on 

unstructured grids, J. Prog. Aerosp. Sci. 43 (2007) 1–47.  

[45] Z.J.Wang and H. Gao, A unifying lifting collocation penalty formulation including the 

discontinuous Galerkin, spectral volume/difference methods for conservation laws on mixed 

grids, J. Comput. Phys. 228 (2009) 8161-8186. 

[46] Z.J. Wang, Y. Liu, Spectral (finite) volume method for conservation laws on unstructured 

grids II: extension to two-dimensional scalar equation, J. Comput. Phys. 179 (2002) 665–697.  

[47] Z.J. Wang, Y. Liu, Spectral (finite) volume method for conservation laws on unstructured 

grids III: one-dimensional systems and partition optimization, J. Sci. Comput. 20 (1) (2004) 137–

157.  

[48] Z.J. Wang, L. Zhang, Y. Liu, Spectral (finite) volume method for conservation laws on 

unstructured grids IV: extension to two-dimensional Euler equations, J. Comput. Phys. 194 (2) 

(2004) 716–741.  

[49] T. Warburton, An explicit construction of interpolation nodes on the simplex, J. Eng. 

Math. 56 (2006) 247–262.  

[50] O.C. Zienkiewicz, R.L. Taylor, The Finite Element Method The Basics, vol. 1, 

Butterworth–Heinemann, Oxford, England, 2000.  

 

 

 


	Title Page_Dist A-09-1-0128
	AFRL-OSR-VA-TR-2013-0174

	sf 298-09-1-0128
	Untitled

	FA9550-09-1-0128_Final_Report[1]



